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The smallest ghosts

The ability to see smaller and smaller objects has always been
one of the hardest challenges of humankind together with the
ability to see bigger and bigger things.

This ability grew together with a general advancement in
technology and progress that built newer and more powerful
tools, such as microscopes and telescopes. Already in the fifth
century before Christ Democritus started to talk about indi-
visible entities (atoms) that made up the entire universe. The
idea of a smallest part making up the whole seems to be the
foundation of science and logic, and progress so far did not dis-
appoint our early hypothesis. In fact today with the particles
accelerators we are able to detect subatomic particles and the
radio telescopes help us to see enormous objects like the further
Quasars.

The journey chasing infinitesimals and infinite numbers in
mathematics shares many analogies with the one in science. In-
finitesimals have been theorized since the beginning of logic. As
far as math can remember infinitely small objects and distances
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where known to exist, but they where no more then ghosts.
Every mathematicians knew they where there, they felt them,
but no one could see them, since the tools to detect such small
entities was still far to be discovered.

Archimedes started to see geometric objects as made up of
an infinite number of infinitely small elements. Eudoxus’ re-
ductio ad absurdum was a rudimentary step towards the more
advanced calculus that was used by Archimedes to find the area
and volumes of many solids. Of course the method involved
slicing the solids in laminae of infinitely small thickness and add
them up together. Archimedes himself said about the method:
“This has not therefore been proved, but a certain impression
has been created that the conclusion is true.” This amounted
to suggesting that he knew that mathematical objects are made
by smallest parts but at that time this could be no more than a
good intuition.

Leibniz refined the idea of the reductio ad absurdum discov-
ering the differential and integral calculus. It was the seven-
teenth century when he introduced the symbol dx to represent
an infinitely small quantity, but as he himself wrote, ”... as small
as you please, so that the error that one may assign may be less
that a certain assign quantity”. The infinitesimals whispered to
Leibniz too, but since it did not have a fishnet that was thin
enough to catch them, he had the brilliant idea of defining the
dx as a quantity that can be omitted since it can be chosen as
small as we need to omit it. But even then, no infinitesimals
where clearly seen. Notably, Leibniz’s conception of infinites-
imal differs philosophically ever so slightly from Newton’s (in
ways that we won’t get into in this work), and I have been told
Leibniz had things more right than Newton.

Even Euler, was chasing these little ghosts. He just knew
they existed and they acted like normal numbers. For him it
existed a number ω that was so small that aω = 1+ψ, where also
ψ was infinitely small. However in his works, he did not explored
the infinitesimals as a measurable quantity to be known exactly,
but he instead gave Leibniz and Newton’s work for granted and



took advantage of the concept that some numbers are as small
as we can make them. It was around the 1750.

Then, in 1966, three hundreds years later Robinson finally
saw them. He caught the infinitesimals. Doing so required deep
logical insight. Later on, Luxembourg came up with tools to
finally see them, like the man who invented the microscope. It
was the moment were humans were given the maximum magni-
fication machinery.

We will now explore a combination of both approaches to
build a numerical system where the infinitesimals lay and can
be seen in all their splendor.

Why couldn’t we see the infinitesimal before
1966?

Because we were looking in the wrong place. The most ad-
vanced, dense field at that time was the real numbers. The
problem mathematicians had with the ”magnification” was the
way that R is built.

Despite R being a miracle field in which all irrational and
transcendental numbers are included, and despite also the ex-
treme density of the real number line, infinitesimals cannot be
spotted on it (even though the lay just right around each corner),
because of the way the real numbers are defined and “equalized”.

According to the classical construction of the real numbers
as equivalence classes of Cauchy sequences of rational numbers,
if (an)∞n=1 and (bn)∞n=1 are Cauchy sequences of rational numbers,
then limn→∞ an and limn→∞ bn are real numbers, and these real
numbers are the same if and only if the sequence (an − bn)∞n=1

converges to 0. As it turns out, the equivalence relation on R
that is above defined is guaranteed to hide the infinitesimals.

Consider the Cauchy sequence
(
1
n

)∞
n=1

. This sequence is an
obvious candidate for giving rise to an infinitesimal, since in-
tuitively the terms decrease infinitely as the denominator gets
large without limits, but they never become zero. However,



given the classical equivalence relation used to build the reals
as equivalence classes of Cauchy sequences of rational numbers,
this sequence is simply the real number 0.

Reiterating, if we chose an arbitrary ε > 0 and a number
N such that N > 1

ε
, then for every n ≥ N , we can see that

| 1
n
− 0| ≤ 1

n
≤ 1

N
< ε. This means that

(
1
n

)∞
n=1

is zero, or better
it is of the equivalence class of zero. So basically it represents
zero together with other ”ghosts” like

(
1
n2

)∞
n=1

,
(

1
n3

)∞
n=1

and so
on, none excluded. All the Cauchy sequences that are eventually
ε- close to 0, are 0. So we are left with no hint of an infinitesimal.

The thing is we all see that they are not zero, but the real
number system is entirely built on the concept of ε- closeness,
so if we deny them to be zero, the consequence is simply the
disappearing of the real number line. However giving up on
the idea that

(
1
n

)∞
n=1

is an infinitesimal seems like giving up
on an obvious truth, or at the very least an obvious path for
enlightenment.

Then let’s start with analyzing sequences of rationals in a
different way and build a field where the equivalent relation is
favorable to our intuition. A good start is to observe that the

sequences

〈
1,

1

2
,
1

3
, . . .

〉
and 〈0, 0, 0, . . .〉 have nothing in com-

mon if compared component wise. Or we can say, anticipating
the terminology that we will use from now on, that the terms
do not agree.

The first hurdle we find is that we cannot define an equiv-
alence relation between two sequences limited on a total agree-
ment terms-wise, or else 〈0, 0, 0, . . .〉 and 〈7, 0, 0, 0, . . .〉 would
not be equal and we would have big issues in defining what the
first sequence actually represents if not 0.

Then we introduce a new amazing idea, simple at first but
that does not come without complications: Let two sequences
be equivalent if they agree on a large number of terms. (We
leave the concept of “large” vague for the moment, but we’ll get
back to it soon.)

Specifically, let r = 〈r1, r2, r3, . . .〉 and s = 〈s1, s2, s3, . . .〉 be



two sequences, so that

r ≡ s if and only if the set Er,s = {n|rn = sn} is large.

This would immediately set 〈 1
n
〉 6= 0 since E〈 1n〉,0 = ∅, so

obviously not large. (We will need to define our concept of
largeness to reflect the intuition that ∅ is not large, of course.)

However we encounter now the first high hurdle. We can tell
(intuitively) that ∅ is not large but, what’s large?

It is hard to start with showing a large object, as we will be
able to do in the future, but we can instead begin by defining the
properties of largeness, so that we can recognize large objects by
their properties, and we can build tools that are able to recognize
and catch objects with such properties.

How largess look like

The first property of largeness comes from the fact that we want
to ensure any sequence to be equal to itself, so we want (or we
need) the set of the natural numbers to be large. This is because
we need Er,r = {n|rn = rn} = N to be sufficiently large for the
equivalency.

Then, since the equivalence relation must be transitive, if A
and B are large sets, then we hope A∩B also to be large. This
property seems wanting to exclude many intuitively large sets,
but if Ers and Est are large, then Ert = {n|rn = tn} is also large
by the transitivity. But Ers ∩ Est = Ert. So more in general if
A ∩ B ⊆ C, then C is large. And this also implies that every
superset of a large set is large.

Moreover, for many reasons, we can say that the empty set
cannot be large. In fact, if ∅ is large, then every superset of ∅ is
large, so every subset of N would be large. Also if this property
wouldn’t hold, then not even the first properties would hold.
Finally, as consequence of the previous properties we have that
for every subset A of N either A or Ac are large. In fact, for
Ac = N−A, we have that A∩Ac = ∅. Since we established that



the empty set is not large, then by the first property, A and Ac

cannot be large simultaneously.
Summarizing:

1. N is large.

2. ∅ is not large.

3. If A and B are large sets and A∩B ⊆ C, then C is large.

4. For A ⊆ N, A or Ac is large.

With this properties given to largeness, we can now build an
instrument that help us to collect objects with such properties.

As a mechanical tool that filters small things are retains the
big ones in its thin or rade net, we call these objects filters.

Filters and Ultrafilters

A filter denoted by this elegant, cursive F , is a collection of sets,
with the characteristic that inside the filter only large sets get
stuck. Since we do not know yet what a large thing is, but we
know some properties of largeness, we will see how only objects
with those properties will be found in the filters, so in fact how
the properties of the subsets of F mirror the properties of large
objects.

If I is a non empty set, and P(I) = {A : A ⊆ I} is the power
set of I, meaning the set containing all the possible subsets of
I, then F is a non empty subset of P(I), with the following
properties:

1. If A,B ∈ F then A ∩B ∈ F .

The intersection property will ensure the transitivity via
the agreement sets that will get stuck on the filter.

2. if A ∈ F and A ⊆ B ⊆ I, then B ∈ F .



The superset property, consequence of the intersection prop-
erty, will help to determine whether a set B is contained
in a filter, simply by checking that

A1 ∩ A2 ∩ · · · ∩ An ⊆ B

for some n and some Ai ∈ F .

Consequently a filter that contains the empty set is indeed
the power set, since all the subsets of I are supersets of ∅
and they are in the filter. Moreover, for every set I, I ∈ F .
Note that the set containing I is the smallest filter on I.
In fact, I ∩ I ⊆ I ∈ F , and I ⊆ I and it is indeed the only
supersets of I. So I has the properties to get stuck in the
filter.

An ultrafilter U is a filter that satisfies:

3. For any A ⊆ I, either A ∈ U or Ac ∈ U .

We will see that an ultrafilter is a proper filter (so ∅ 6∈ F ,
and F 6= P(I)) that cannot be extended to a larger proper
filter.

There exist different types of filters, with various properties and
characteristics, constructed to catch different objects, and we
need to be familiar with some of them, which will be the ones
that will help us to construct the hyperreal number system.

The Principal Ultrafilter generated by i is the set of all
the subsets of a nonempty set I that contains i. In notation
F i = {A ⊆ I|i ∈ A}.

The filter generated by H, for ∅ 6= H ⊆ P(I), is the smallest
filter on I including H. Which is the collection FH = {A ⊆
I|B1 ∩ · · · ∩Bn ⊆ A for some n and some Bi ∈ H}.
F i is a special case of the filter generated by H, that is the case



where H has only one member {i}.

The cofinite filter, or Frechet filter (which is not an ultrafilter
but it is contained in an ultrafilter) is the collection of all the
subsets of I whose complement is finite.

A relevant fact to observe is that an ultrafilter that con-
tains a finite set, then it also contains a one-element set, so it is
principal. It follows that a non-principal ultrafilter contains all
cofinite sets. (Fact 1)

Now that our tools are built let’s make sure that the work in
the way we expect when applied on sets we need to determine as
large or not. We will need to see if there is indeed an ultrafilter
on N.

First note that Zorn’s Lemma (the set theory version of the
axiom of choice) states that if (P,≤) is a poset (partially ordered
set), and every linearly ordered ascending chain on P has an
upperbound, then P contains a ≤-maximal element.

A non rigorous proof of this lemma is given by considering
the order of N. Since in fact |N| = ω, then each ascending chain
in P has a maximal capacity of ω elements before it can still
be considered a set. So, since each chain has an upperbound ω,
then, P has a maximal element.

Then we need to check that (P,⊆) is a poset, so that ⊆ is a
relation on P .

So let A ⊆ P . Then A ⊆ A. Then ⊆ is reflexive.
Second let A,B ⊆ P . Then if A ⊆ B and B ⊆ A, then

A = B. hence ⊆ is antisymmetyric.
Finally if A ⊆ B and B ⊆ C, then A ⊆ C. Thus ⊆ is also

transitive and we have shown that (P,⊆) is a poset.
�

Next we need to show that every infinite set has a non prin-
cipal ultrafilter on it:

So let I be an infinite set. Note that the Frechet Filter F co
is proper, and so it has the FIP. Hence it is included in an
ultrafilter U .



Observe that ∀i ∈ I, I −{i} ∈ F co ∈ U . Hence {i} 6∈ U , but
{i} ∈ U i. We conclude that U 6= U i.
Hence we have shown that the ultrafilter on an infinite set is
non principal.

�
At this point, we can summarize and observe some facts that

are fundamental for our further work: since N is infinite, then it
has an ultrafilter on it and it is non principal. Then by (Fact 1)
since the ultrafilter is non principal, then it contains all cofinite
sets. (Fact 2).

Constructing a field

let RN be the set of all sequences of real numbers. Then the
elements of RN are of the form r =< r1, r2, r3, ... >.

Observe that, for r, s ∈ RN

r ⊕ s =< rn + sn : n ∈ N >

and tat
r � s =< rn · sn : n ∈ N >

.
We can see that < RN,⊕,� > is a ring but not a field,

where 0 =< 0, 0, 0, ... > and 1 =< 1, 1, 1, ... >. However,
< 1, 0, 1, 0, ... > � < 0, 1, 0, 1, ... >=< 0, 0, 0, ... >= 0. Thus
every sequence that contains at least one zero term have no
multiplicative inverse.

Now we begin to get into the heart of the matter.
Let’s use (Fact 2). Since N has a non principal ultrafilter on

it, we define the equivalence relation ≡ on RN as

r ≡ s iff {n ∈ N : rn = sn} ∈ U .

We practically begun using the idea of largeness we built
earlier as a help in defining the equivalence relation on RN this
way: r is equivalent to s if the set containing the number of the



terms that they agree on is large enough to be contained in an
ultrafilter.

Then if r ≡ s we say that r and s agree almost everywhere
(modulo U).

It is not ordinary to read a mathematical statement that is
not either true or false, but whose truth is indeed a set of values,
and just to underline and emphasize this concept we write

r 6≡ s iff {n ∈ N : rn = sn} 6∈ U .

Now note that the relation ≡ can be extended also to <,>,≤
and ≥ in RN in the following ways:

r < s = {n ∈ N : rn < sn}
r > s = {n ∈ N : rn > sn}
r ≤ s = {n ∈ N : rn ≤ sn}
r ≥ s = {n ∈ N : rn ≥ sn}.

A new system

Let ∗R = RN/ ∼ U be the set of equivalence classes of RN by ≡.
Then for r ∈ R, [r] ∈∗ R, and if [r] is the equivalence class

of a sequence r ∈ RN, then

∗R = {[r] : r ∈ RN}.

Observe that +, ·, <,>,≤ and ≥ are also well defined and

[r] < [s] iff {n ∈ N : rn < sn} ∈ U .

It might not seen so obvious but we have finally built a ma-
chinery whose magnification is so powerful to finally show us
infinitesimals in all their beauty!

So reconsider our candidate sequence < 1
n
> as an element

of RN. Note that the set of the equivalence class of the sequence
[ 1
n
] is an element of ∗R.



Now, the sequence 0 =< 0, 0, 0, ... > and 1
n

=< 1, 1
2
, 1
3
, ... >

agree everywhere (modulo U) under <.
So [0] < [ 1

n
] since {n ∈ N : 0 < 1

n
} ∈ U .

So, again, we have that [0] < [ 1
n
].

Now let ε > 0 ∈ R, and let ε =< ε, ε, ε, ... >∈ RN. Then
[ε] ∈ ∗R.

Let us analyze the two sequences under the relation <.
Notice that [ 1

n
] < [ε]. In fact [ε] might be smaller, if 0 < ε < 1,

but only for a finite amount of terms, then it will eventually be
larger. Hence the terms whose index in in the set of agreement
of [ 1

n
] being smaller than [ε] is cofinite! So by magic

[
1

n
] < [ε] since {n ∈ N :

1

n
< ε is cofinite} ∈ F co ∈ U ,

where F co is a Frechet filter.
Thus we have seen that [0] < [ 1

n
] < ε, for all ε > 0 and all

n ∈ N.
Here we just met an infinitesimal!
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